Answers

  • 0
  • 0

Global Lithium-ion batteries market trend 2025-2027 Progress in the field of research on anode materials for lithium-ion batteries by Newsmetropolis1927

Recently, on Sinopec's annual results teleconference, the company representative answered questions about the oil prices, and said that the future trend of oil prices is still very uncertain, and it is expected to be around $100 this year and $85 next year respectively.

Sinopec, "There are many factors affecting oil prices at the moment, including geopolitics, macroeconomic trends, the implementation of the policy of OPEC+, the strength of the US DOLLAR and so on. We see a lot of uncertainty in the future oil prices. It is impossible to predict the accurate price, but a general trend could be estimated."

According to Sinopec, international institutions generally have a forecast of around $100 this year and around $85 next year in the oil prices. As geopolitical problems and other issues ease next year, oil prices will be lower than this year.

The volatile oil prices in the international market will continue to affect lots of industries and the supply of many Lithium-ion batteries.

Lithium-ion batteries have become hotspots in energy research due to their higher energy density, long service life, and smaller volume compared with lead-acid, nickel-cadmium, nickel-metal hydride, and other batteries, and no memory effect. One. The negative electrode material is one of the critical components of lithium-ion batteries. It acts as the acceptor of lithium ions and realizes the insertion and extraction of lithium ions during the charging and discharging process. Therefore, the quality of the negative electrode material directly affects the overall performance of the lithium-ion battery. Graphite and modified graphite are widely used as anode materials for commercial lithium-ion batteries. Still, their theoretical capacity is only 372mAh/g, which significantly restricts the development of high-energy power batteries. Group IV element (silicon, germanium, tin)-based anode materials have become a research hotspot for next-generation lithium-ion batteries due to their high theoretical capacities (3579mAh/g, 1600mAh/g, 994mAh/g, respectively). However, silicon, germanium, and tin-based anode materials have the problem of significant volume expansion during the charging and discharging process. Long-term charging and discharging will cause the pulverization of particles and the shedding of active materials, thus affecting the cycle stability of lithium-ion batteries.

1651115005808790.jpg

In recent years, the advanced lithium-ion battery team led by Han Weiqiang, a researcher at the Institute of New Energy Technology affiliated with the Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, has made a series of progress in high-capacity silicon, germanium, and tin-based anode materials. In terms of high-performance silicon-based anode materials, researchers have developed a low-cost, high-capacity, and high-stability porous silicon-based anode material technology. By carbon coating, the porous silicon, the performance of the silicon-based negative electrode material for lithium-ion batteries is further improved. The capacity retention rate of the silicon-carbon composite electrode material was 86.8% after 300 charge-discharge cycles. Related research has applied for Chinese invention patents (201410150747.5, 201410276413.2), and the research results were published in NanoEnergy (2015, 11, 490-499) in the form of Communication.

Based on the previous work, the team synthesized and prepared a series of new phase MSn5 (M=Fe, Co, Fe0.5Co0.5) alloy nano-anode materials using the wet chemical method of improving polyols. The synthesized FeSn5 alloy nanoparticles have a theoretical capacity of 929mAhg-1 when used as a negative electrode material for lithium-ion batteries, which is the material with the highest theoretical specific capacity among the reported M-Sn (M is an electrochemically inert metal) alloy. The researchers prepared a series of Fe0.5Co0.5Sn5 new phase alloy nanoparticles with a 30-50nm particle size range, which further expanded the Co-Fe-Sn phase diagram. Related achievements have applied for invention patents (2013104705134, 201310706760X, 2103715406A). At the same time, the charge-discharge mechanism was deeply discussed and explained by in-situ XAFS, in-situ XRD, and electrochemical test methods. The research on the electrochemical mechanism of this series of tin-based new phase alloy anode materials provides effective theoretical guidance for the team's subsequent development of high-performance tin-based anode materials. Relevant results were published in JournalofMaterialsChemistryA (2015, 3(13):7170-7178) and ACS Appl.Mater.Interfaces (2015,7,7912-7919).

The team has also made progress in the research and development of long-life titanium-based anode materials, applying for an invention patent (201310685139. X), and the relevant results were published in the Journal of Materials Chemistry (2014(2), 10599-10606).

High-quality lithium-ion batteries supplier

Luoyang Moon & Star New Energy Technology Co., LTD, founded on October 17, 2008, is a high-tech enterprise committed to developing, producing, processing, selling, and technical services of lithium-ion battery anode materials. After more than 10 years of development, the company has gradually developed into a diversified product structure with natural graphite, artificial graphite, composite graphite, intermediate phase, and other negative materials (silicon-carbon materials, etc.). The products are widely used in high-end lithium-ion digital power and energy storage batteries. If you are looking for Lithium battery anode material, click on the needed products and send us an inquiry:sales@graphite-corp.com.

 


Europe's immediate goal of reducing its dependence on Russian gas in response to the conflict with Ukraine presents a rare opportunity for the United States, the world's largest gas producer. America's LNG exporters have made a fortune this time. Investors are bullish on the future of natural gas, as evidenced by the recent record high share price of Energy company Chenier.  

But the outlook for more than a dozen new LNG projects is highly uncertain as construction costs rise, US gas prices soar and climate policymakers seek to move away from a long-term reliance on fossil fuels. Even the most advanced projects can take years to become operational.  

Currently, the total U.S. LNG Lithium-ion batteries are expected to continue to rise in the future.

Inquery us

Our Latest Answers

Global water reducer,water reducing agent ,concrete admixtures market trend 2023-2026 The formula and production method of water reducer for concrete by Newsmetropolis1927

The application of various concrete admixtures can not only improve the performance of concrete, but also promote the development of new concrete technologies, promote the application of industrial by-products in cementitious material systems, and al…

Global silicon carbide powder market trend 2024-2030 What can Silicon Carbide Devices Bring to New Energy Vehicles? by Newsmetropolis1927

Aluminium buyers in the US physical metal market have held off on new orders amid fears of a recession triggered by rising inflation and supply chain crises. Spot aluminium trading on the market has been suspended in recent weeks, according to indus…

Global nano silica market trend 2022-2027 What is Nano Silica Used For? by Newsmetropolis1927

From April the French government will reduce fuel taxes slightly to ease the burden on consumers. Warned of possible energy shortages in France by the end of the year and called on the French to conserve electricity and gas from now on, saying that i…